Subsidence and Levee Vulnerability in the Sacramento-San Joaquin Delta

Ben Brooks, SOEST, U Hawaii
Gerald Bawden, USGS SW Regional
Charles Werner, Gamma Remote Sensing
Deepak Manjunath, SOEST, U Hawaii
Noah Knowles, USGS
Joel Dudas, Cal. Dept. Water Resources
Dan Cayan, Scripps/USGS

Funded by the California Energy Commission PIER Program through the California Climate Change Center

SACRAMENTO-SAN JOAQUIN DELTA & California Water Budget **OUTFL**OW **ANNUAL INFLOW** • 40% CA land area runoff water system • 50 % CA otal streamflow water for San Francisco Bay (21 maf) Sacramento River Consumptive use/ (21.2 maf) channel depletion (1.7 maf) Precipitation (1 maf) Contra Costa Canal (0.1 maf) East side streams (1.4 maf) South Bay and California Aqueducts (2.5 maf) San Joaquin River (4.3 maf) Delta-Mendota Canal Pacific Ocean (2.5 maf) San Francisco Bay (Note: maf, millions of acre feet)

ISLAND EVOLUTION, SUBSIDENCE, AND LEVEES

Island draining for agricultrural purposes → compaction and elevation loss.

Anaerobic Decay
CO2, CH4
Main Channel
Water Table

Decreased Levee Stability

Main Channel

Increased Seepage Rates

Sea Level Rise

Pumping Costs

Or Levee Failure

Levee Failure Modes

- differential subsidence
- overtopping(largely un-studied)

Sea level rise, ageing levees, continued subsidence →

risk to fresh water quality

From Mount and Twiss, 2005

INSAR AND LEVEE STABILITY: HURRICANE KATRINA

From Dixon et al., 2006

Levee failures from overtopping correlated with highest subsidence rates

50 YEAR PROJECTION

From Mount and Twiss, 2005

Based on leveling & point measurements (Deverel & Rojstaczer, 1996; Rojstaczer & Deverel. 1995) and regional topographic analysis

NEED FOR SYNOPTIC, HIGH RESOLUTION MEASUREMENT/ MONITORING OF DELTA SUBSIDENCE

SPACE-BASED GEODESY:

GPS and InSAR (Synthetic Aperture Radar Interferometry)

•mm-scale resolution

•errors: atmospheric and ionospheric

GPS: temporal coverage InSAR: spatial coverage

1 component (LOS – line of sight)

DELTA PSINSAR TARGETS

AVERAGE VERTICAL MOTION (1995-2000)

GAS FIELDS & GROUND WATER WELLS

TIME SERIES

- seasonal correlation but no average rate contamination from hydrologic sources

CROSS-CORRELATION ANALYSIS

PEAT THICKNESS MEASUREMENTS

ELEVATION & PEAT THICKNESS

-InSAR technique not sensitive to peat-related differential subsidence but records more regional signal which we infer to be the continued compaction of the Delta sedimentary column

- Similar rates to those modeled and observed in the Mississippi Delta

PROJECTIONS

CONCLUSIONS

- -InSAR provides synoptic subsidence measurement throughout the Delta at rates of 5-20 mm/yr
- Data are not contaminated by hydrologic nor hydrocarbon-related signal
- Data are not sensitive to peat-related differential subsidence
- InSAR subsidence likely records continuing compaction of Holocene Delta sediments
- Projections including sea-level rise indicate large-scale overtopping threat in the 21st century